The generator matrix

 1  0  0  1  1  1  1  1  1  1  1 2X 2X^2+X  1  1  1  1  1  1  1  0 2X 2X  1  1  1 X^2+2X  1  1  1 2X  1 X^2+X  1  1  1  1  1 2X^2+2X  1  1  1  1 X^2+2X  1  1 2X^2+X X^2 2X^2+2X  1  1  1
 0  1  0  0 X^2 2X^2+2X+1 2X^2+2X+1  1 2X^2+2X+2  2 X+2  1  1 X^2+X 2X^2+X+2 2X^2+X 2X^2+1 X^2+X+1  2 X^2+X+2  1  1 2X X+1 2X^2+2X+1 2X^2+2X  1 X+2 2X^2+X+1 X^2+2X  1 X^2  1  1 2X+2 2X+2  1 2X^2+X  1  2 2X^2+1 X+2  X  1 2X^2+X+1  1  1  1  1 X^2+X+1 2X^2  0
 0  0  1  1 2X^2+2 2X^2+2 2X^2+2X  1 2X^2+2X+2  X 2X+1 X+1 2X^2+2X+2 X^2+2X+2 X^2 X+1 2X 2X^2+X+2  2 X^2+2X+1  0 X^2+2X+2  1 2X+1 2X+2 2X X+1 2X^2+2X+2 2X^2+X X^2+1 X+2 X^2+2  1 2X+1 X^2  1 X^2+2X+1  X X^2 2X^2+2X+1 X^2+2X X^2+1  2 2X^2+2X X^2+2 X^2+X+2 X+1 X^2+2 X^2+2X+1 2X^2+X+1 2X^2+2 X^2+2X+2
 0  0  0 2X 2X^2 X^2  0 X^2+2X 2X^2+X  X 2X^2  0 2X^2 X^2+X 2X^2+2X X^2  X  X 2X^2+2X 2X 2X 2X X^2+2X X^2+X X^2+2X 2X^2+2X X^2+2X X^2 2X X^2+X 2X^2+X 2X^2+2X  X  0  0  X X^2+X 2X^2+X X^2+X X^2+2X 2X^2+X 2X^2+X 2X^2 2X^2+X X^2+2X X^2 X^2  0 2X X^2+X 2X^2+X X^2+2X

generates a code of length 52 over Z3[X]/(X^3) who�s minimum homogenous weight is 94.

Homogenous weight enumerator: w(x)=1x^0+480x^94+726x^95+2072x^96+3102x^97+4728x^98+6666x^99+8922x^100+13986x^101+15068x^102+18102x^103+22068x^104+20632x^105+18330x^106+17148x^107+11104x^108+6804x^109+3726x^110+1852x^111+948x^112+258x^113+150x^114+132x^115+30x^116+40x^117+42x^118+18x^119+6x^122+6x^123

The gray image is a linear code over GF(3) with n=468, k=11 and d=282.
This code was found by Heurico 1.16 in 50 seconds.